Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.

Identifieur interne : 000179 ( Main/Exploration ); précédent : 000178; suivant : 000180

Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.

Auteurs : Sheng-Chun Yu [Royaume-Uni] ; Florian Kuemmel [Royaume-Uni] ; Maria-Nefeli Skoufou-Papoutsaki [Royaume-Uni] ; Pietro D. Spanu [Royaume-Uni]

Source :

RBID : pubmed:30311441

Descripteurs français

English descriptors

Abstract

Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin-mediated endocytosis. We created mutants of the TORC1 pathway, alpha-arrestins, and eisosome-related genes. Our results demonstrate that the TORC1-Npr1-Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200-fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.

DOI: 10.1002/mbo3.730
PubMed: 30311441
PubMed Central: PMC6528558


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.</title>
<author>
<name sortKey="Yu, Sheng Chun" sort="Yu, Sheng Chun" uniqKey="Yu S" first="Sheng-Chun" last="Yu">Sheng-Chun Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuemmel, Florian" sort="Kuemmel, Florian" uniqKey="Kuemmel F" first="Florian" last="Kuemmel">Florian Kuemmel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Skoufou Papoutsaki, Maria Nefeli" sort="Skoufou Papoutsaki, Maria Nefeli" uniqKey="Skoufou Papoutsaki M" first="Maria-Nefeli" last="Skoufou-Papoutsaki">Maria-Nefeli Skoufou-Papoutsaki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Spanu, Pietro D" sort="Spanu, Pietro D" uniqKey="Spanu P" first="Pietro D" last="Spanu">Pietro D. Spanu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30311441</idno>
<idno type="pmid">30311441</idno>
<idno type="doi">10.1002/mbo3.730</idno>
<idno type="pmc">PMC6528558</idno>
<idno type="wicri:Area/Main/Corpus">000437</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000437</idno>
<idno type="wicri:Area/Main/Curation">000437</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000437</idno>
<idno type="wicri:Area/Main/Exploration">000437</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.</title>
<author>
<name sortKey="Yu, Sheng Chun" sort="Yu, Sheng Chun" uniqKey="Yu S" first="Sheng-Chun" last="Yu">Sheng-Chun Yu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuemmel, Florian" sort="Kuemmel, Florian" uniqKey="Kuemmel F" first="Florian" last="Kuemmel">Florian Kuemmel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Skoufou Papoutsaki, Maria Nefeli" sort="Skoufou Papoutsaki, Maria Nefeli" uniqKey="Skoufou Papoutsaki M" first="Maria-Nefeli" last="Skoufou-Papoutsaki">Maria-Nefeli Skoufou-Papoutsaki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Spanu, Pietro D" sort="Spanu, Pietro D" uniqKey="Spanu P" first="Pietro D" last="Spanu">Pietro D. Spanu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Sciences, Imperial College London, London, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Life Sciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">MicrobiologyOpen</title>
<idno type="eISSN">2045-8827</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Culture Media (chemistry)</term>
<term>Gene Transfer Techniques (MeSH)</term>
<term>Genetics, Microbial (methods)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Génétique microbienne (méthodes)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Techniques de transfert de gènes (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Milieux de culture</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetics, Microbial</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génétique microbienne</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Transfer Techniques</term>
<term>Signal Transduction</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Techniques de transfert de gènes</term>
<term>Transduction du signal</term>
<term>Transformation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin-mediated endocytosis. We created mutants of the TORC1 pathway, alpha-arrestins, and eisosome-related genes. Our results demonstrate that the TORC1-Npr1-Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200-fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30311441</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-8827</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>MicrobiologyOpen</Title>
<ISOAbbreviation>Microbiologyopen</ISOAbbreviation>
</Journal>
<ArticleTitle>Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>e00730</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mbo3.730</ELocationID>
<Abstract>
<AbstractText>Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin-mediated endocytosis. We created mutants of the TORC1 pathway, alpha-arrestins, and eisosome-related genes. Our results demonstrate that the TORC1-Npr1-Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200-fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.</AbstractText>
<CopyrightInformation>© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Sheng-Chun</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuemmel</LastName>
<ForeName>Florian</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Skoufou-Papoutsaki</LastName>
<ForeName>Maria-Nefeli</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spanu</LastName>
<ForeName>Pietro D</ForeName>
<Initials>PD</Initials>
<Identifier Source="ORCID">0000-0001-8928-6049</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Imperial College London, London, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiologyopen</MedlineTA>
<NlmUniqueID>101588314</NlmUniqueID>
<ISSNLinking>2045-8827</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="Y">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005827" MajorTopicYN="N">Genetics, Microbial</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">central metabolism</Keyword>
<Keyword MajorTopicYN="Y">endocytosis</Keyword>
<Keyword MajorTopicYN="Y">extracellular DNA</Keyword>
<Keyword MajorTopicYN="Y">gene transfer</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30311441</ArticleId>
<ArticleId IdType="doi">10.1002/mbo3.730</ArticleId>
<ArticleId IdType="pmc">PMC6528558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 15;119(Pt 22):4585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 8;289(32):22103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Feb 23;439(7079):998-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Jul;34(14):2660-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jul 20;340(6230):245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2547163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2014;68:377-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">347451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Nov 15;128(22):4220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Nov 14;195(4):657-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioeng Bugs. 2010 Nov-Dec;1(6):395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1963 Jun 1;17(3):609-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19866628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Aug 15;122(Pt 16):2887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Dec;10(12):1856-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):3068-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Dec 12;26(24):4946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Feb;14(3):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9544242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 20;6:35738</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27760994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2011 Oct;90(10):825-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jun 30;13(8):747-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9219339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 May;203(1):299-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4506-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(12):2388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2012 Mar;22(3):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22245053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Aug 6;198(3):405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Jun 15;128(12):2219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25934700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Feb 1;124(Pt 3):328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21224391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Dec;34(24):4447-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25266656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jul;16(7):3255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8668140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 May 14;153(4):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Dec 1;25(24):3962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Sep 14;275(5676):104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">357984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jun 29;185(7):1227-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19564405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Apr 23;317(1):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3552-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jan 21;156(2):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Aug;13(8):1979-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24961812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 10;26(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2013 Jun;103(6):1181-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23529158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Yu, Sheng Chun" sort="Yu, Sheng Chun" uniqKey="Yu S" first="Sheng-Chun" last="Yu">Sheng-Chun Yu</name>
</region>
<name sortKey="Kuemmel, Florian" sort="Kuemmel, Florian" uniqKey="Kuemmel F" first="Florian" last="Kuemmel">Florian Kuemmel</name>
<name sortKey="Skoufou Papoutsaki, Maria Nefeli" sort="Skoufou Papoutsaki, Maria Nefeli" uniqKey="Skoufou Papoutsaki M" first="Maria-Nefeli" last="Skoufou-Papoutsaki">Maria-Nefeli Skoufou-Papoutsaki</name>
<name sortKey="Spanu, Pietro D" sort="Spanu, Pietro D" uniqKey="Spanu P" first="Pietro D" last="Spanu">Pietro D. Spanu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30311441
   |texte=   Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30311441" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020